Environmental Almanac: Work confirms worth of soil conservation practices

Environmental Almanac: Work confirms worth of soil conservation practices

From a distance, it might seem there's little mystery involved with nutrient pollution in waterways that flow through the intensively farmed landscapes of the American Midwest. Farmers put fertilizer on fields, and some of it ends up in streams when it rains.

But how does it "end up" in streams?

To answer that question, you might want a detective. Or better still, a scientist who operates like one. Enter Conor Neal, who next week will receive a master's degree in geology from the University of Illinois.

Over the past year and a half, he has been working with Department of Geology Professor Alison Anders to figure out how one key nutrient, phosphorous, is transported from the surrounding landscape into the lower reach of Wildcat Slough, a tributary that feeds into the Sangamon River in the Sangamon River Forest Preserve just south of Fisher.

How does nutrient migration involve geology, you ask? It's in the fine sediment. As Neal and Anders explained it to me, some nutrients, such as nitrogen, dissolve easily in water and are thus carried in solution. Others, including phosphorous, prefer to attach to particles of soil. Fine sediment — defined by geologists as silt and clay — is the most important of these, since fine sediment particles offer so much surface area.

In short, says Neal: "Fine sediment carries phosphorous. Find the source of fine sediment in a stream, and you find the source of phosphorous."

The fieldwork for Neal's project was pretty straightforward. First, using satellite images he identified the six types of land cover in the watershed, 99 percent of which (literally) is devoted to row-crop agriculture. The five much smaller types included forested uplands, forested floodplain, pasture, channel banks and grass (where there is no apparent grazing).

Then he took samples of fine sediment from those areas. This involved digging up a sandwich bag's worth of soil with a garden trowel. These samples were to serve as a reference for samples of sediment taken from Wildcat Slough during spring floods (since that's when the water carries significant amounts of suspended sediment).

Finally, he collected suspended sediment from Wildcat Slough during heavy rains between March and June last year. He did so using a simple device called a sediment trap, which is a 4-foot piece of PVC pipe fitted with a cone-shaped nose that's anchored to a fencepost in the stream. As flowing water enters the trap through the nose, its velocity decreases dramatically, which causes whatever fine sediment it carries to drop out before it exits through a tube at the tail.

Like detectives, scientists often have a pretty good idea of what they're going to find when they begin an investigation. In the case of Neal's study, he and Anders both anticipated the fine sediment suspended in the lower reach of Wildcat Slough during spring floods would be traceable to the agricultural fields in the watershed — after all, that's where the bare soil is.

But Neal's analysis showed something very different; less than 5 percent of the fine sediment collected in the stream was traceable to farm fields. A much greater portion, roughly half, came directly from the channel banks, with the rest contributed by forested and grassy areas. Why that's so is a new mystery to be investigated.

What these results suggest, says Anders, is that the soil conservation practices employed by farmers in that part of the watershed are doing exactly what they're supposed to do, keeping the soil on the fields and out of the stream. In doing so, they're also preventing phosphorous from moving into the stream.

When we spoke, Neal emphasized his great debt of gratitude to the families who allowed him onto their land to do fieldwork; without their cooperation, such a study could not have been done.

Neal's project is a precursor to a much larger, five-year effort involving UI researchers from multiple disciplines. They will be collaborating with partners from other universities and conservation agencies to understand water, nutrient and sediment transport in the Upper Sangamon River Basin.

The ultimate success of this project, called the "Intensively Managed Landscapes Critical Zone Observatory," will also depend on partnerships with local landowners, farm operators, land managers and urban planners. I'll return to it here as it develops, but in the meantime more information is available at criticalzone.org/iml/.

Environmental Almanac is a service of the UI School of Earth, Society and Environment, where Kanter is communications coordinator. Environmental Almanac can be heard on WILL-AM 580 at 4:45 and 6:45 p.m. Thursdays.

Sections (2):News, Local


News-Gazette.com embraces discussion of both community and world issues. We welcome you to contribute your ideas, opinions and comments, but we ask that you avoid personal attacks, vulgarity and hate speech. We reserve the right to remove any comment at our discretion, and we will block repeat offenders' accounts. To post comments, you must first be a registered user, and your username will appear with any comment you post. Happy posting.

Login or register to post comments